Dynamical magnetostructural properties of Anabaena ferredoxin.

نویسندگان

  • Eduard Schreiner
  • Nisanth N Nair
  • Rodolphe Pollet
  • Volker Staemmler
  • Dominik Marx
چکیده

A mixed quantum/classical investigation of the dynamical magnetostructural properties, that is, "magnetodynamics," of oxidized Anabaena PCC7119 ferredoxin is carried out at room temperature in two distinct conformational states. This protein hosts a [2Fe-2S] cluster in which two iron centers are antiferromagnetically coupled to an overall low-spin electronic ground state that has a genuine multireference character. To study the magnetodynamics of this prosthetic group, an approximate spin projection method is formulated in the framework of density functional theory that allows for multideterminant ab initio molecular dynamics simulations to be carried out efficiently. By using this scheme, the influence of both thermal fluctuations and conformational motion on the structure of the [2Fe-2S] cluster and on the dynamics of the antiferromagnetic coupling constant, J(t), has been investigated. In addition to demonstrating how sensitively the shape of the [2Fe-2S] core itself is affected by hydrogen bonding, the analyses reveal a complex dynamical coupling of J to both local vibrations and large-amplitude motion. It is shown that this interplay can be understood in terms of specific vibrational modes and distinct hydrogen-bonding patterns between the iron-sulfur cluster and the protein backbone, respectively. This implies going beyond the Goodenough-Kanamori rules for angular magnetostructural correlations of oxidized iron-sulfur prosthetic groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of glutamic acid 301 in the catalytic mechanism of ferredoxin-NADP+ reductase from Anabaena PCC 7119.

The crystal structure of Anabaena PCC 7119 ferredoxin-NADP+ reductase (FNR) suggests that the carboxylate group of Glu301 may be directly involved in the catalytic process of electron and proton transfer between the isoalloxazine moiety of FAD and FNR substrates (NADPH, ferredoxin, and flavodoxin). To assess this possibility, the carboxylate of Glu301 was removed by mutating the residue to an a...

متن کامل

Expression of ferredoxin-NADP+ reductase in heterocysts from Anabaena sp.

The expression of ferredoxin-NADP+ reductase (FNR) from Anabaena sp. PCC 7119 in heterocysts and vegetative cells has been quantified. Specific reductase activity in heterocysts was approximately 10 times higher than in vegetative cells, corresponding to the increased FNR protein content. This was confirmed by immunoquantification of the FNR protein from whole filaments of Anabaena sp. PCC 7120...

متن کامل

Structure-function relationships in Anabaena ferredoxin/ferredoxin:NADP(+) reductase electron transfer: insights from site-directed mutagenesis, transient absorption spectroscopy and X-ray crystallography.

The interaction between reduced Anabaena ferredoxin and oxidized ferredoxin:NADP(+) reductase (FNR), which occurs during photosynthetic electron transfer (ET), has been investigated extensively in the authors' laboratories using transient and steady-state kinetic measurements and X-ray crystallography. The effect of a large number of site-specific mutations in both proteins has been assessed. M...

متن کامل

Reduction of nitrate and nitrite by subcellular preparations of Anabaena cylindrica. I. Reduction of nitrite to ammonia.

Reduction of nitrite by cell-free preparations of Anabaena cylindrica in the dark has been investigated. Nitrite-reducing activity was recovered in a supernatant fraction. The nitrite reductase system was partially purified by column chromatography on Sephadex G-75. NADPH could serve as an H-donor. NADH was completely inactive. The reduction required ferredoxin which mediated the transfer of el...

متن کامل

Mutations of surface residues in Anabaena vegetative and heterocyst ferredoxin that affect thermodynamic stability as determined by guanidine hydrochloride denaturation.

The stability properties of oxidized wild-type (wt) and site-directed mutants in surface residues of vegetative (Vfd) and heterocyst (Hfd) ferredoxins from Anabaena 7120 have been characterized by guanidine hydrochloride (Gdn-HCl) denaturation. For Vfd it was found that mutants E95K, E94Q, F65Y, F65W, and T48A are quite similar to wt in stability. E94K is somewhat less stable, whereas E94D, F65...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 52  شماره 

صفحات  -

تاریخ انتشار 2007